Pure Mathematics P1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Pure Mathematics P2

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_a a}$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n} \qquad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^r + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Numerical integration

The trapezium rule:
$$\int_a^b y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Pure Mathematics P3

Candidates sitting Pure Mathematics P3 may also require those formulae listed under Pure Mathematics P1 and P2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) \equiv cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad \left(A \pm B \neq \left(k + \frac{1}{2}\right) \pi\right)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Differentiation

$$f(x)$$
 $f'(x)$

$$\tan kx$$
 $k \sec^2 kx$

$$\sec x$$
 $\sec x \tan x$

$$\cot x$$
 $-\csc^2 x$

$$\csc x$$
 - $\csc x \cot x$

$$\frac{f(x)}{g(x)} \qquad \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Integration (+ constant)

$$\int \mathbf{f}(x) \ \mathbf{d}x$$

$$\sec^2 kx \qquad \qquad \frac{1}{k} \tan kx$$

Pure Mathematics P4

Candidates sitting Pure Mathematics P4 may also require those formulae listed under Pure Mathematics P1, P2 and P3.

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^r + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Integration (+ constant)

$$\int \mathbf{f}(x) \qquad \qquad \int \mathbf{f}(x) \quad \mathbf{d}x$$

$$\operatorname{cosec} x - \ln \left| \operatorname{cosec} x + \cot x \right|, \quad \ln \left| \tan \left(\frac{1}{2} x \right) \right|$$

$$|\ln|\sec x + \tan x|$$
, $|\ln|\tan\left(\frac{1}{2}x + \frac{1}{4}\pi\right)|$

$$\int u \, \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \, \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

Further Pure Mathematics FP1

Candidates sitting Further Pure Mathematics FP1 may also require those formulae listed under Pure Mathematics P1 and P2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	$(at^2, 2at)$	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line
$$y = (\tan \theta)x$$
: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

Further Pure Mathematics FP2

Candidates sitting Further Pure Mathematics FP2 may also require those formulae listed under Further Pure Mathematics FP1, and Pure Mathematics P1, P2, P3 and P4.

Area of a sector

$$A = \frac{1}{2} \int r^2 d\theta$$
 (polar coordinates)

Complex numbers

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$${r(\cos\theta + i\sin\theta)}^n = r^n(\cos n\theta + i\sin n\theta)$$

The roots of $z^n = 1$ are given by $z = e^{\frac{2\pi ki}{n}}$, for k = 0, 1, 2, ..., n - 1

Maclaurin's and Taylor's Series

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^r}{r!}f^{(r)}(0) + \dots$$

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^r}{r!}f^{(r)}(a) + \dots$$

$$f(a+x) = f(a) + xf'(a) + \frac{x^2}{2!}f''(a) + \dots + \frac{x^r}{r!}f^{(r)}(a) + \dots$$

$$e^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots$$
 for all x

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots \quad (-1 < x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$$
 for all x

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots$$
 for all x

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{2r+1} + \dots \quad (-1 \leqslant x \leqslant 1)$$